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Results of a three-dimensional finite-element study for the effect of embedment on the undrained
bearing capacity, the elastic stiffness, and the cyclic behaviour of square-in-plan foundations are
presented. Uniaxial horizontal (Q) and pure-moment (M ) limit loads, as well as the respective elastic
stiffnesses (KHH and KMM) are obtained, and simplified models are developed to interpret the observed
trends. The substantially different role of embedment in increasing elastic stiffness and in increasing
ultimate loads is interpreted in simple soil mechanics terms. Extensive comparisons are made with the
two-dimensional results for a strip foundation. Combined (QM) loading capacities are obtained and
presented as ‘interaction’ diagrams; the significance of the vertical load (N ) is also addressed. The
importance of the type of contact between the foundation interfaces (vertical or horizontal) with the
surrounding or underlying soil is explored. A substantial reduction in all capacities is shown when
the interfaces are tensionless and of limited shear (sliding) resistance (TSI), compared with the
capacities for the ideal case of fully bonded contact (FBC). The cyclic moment–rotation (M–θ)
response of embedded foundations carrying a simple slender structure is investigated parametrically. It
is found that the monotonic loading curves provide approximately the envelope for the cyclic M–θ
loops. But the shape of these loops and the ensuing settlement of the foundation are both functions of
the factor of safety (FSV) against vertical bearing capacity. In case of surface and shallowly embedded
foundations with high values of FSV (i.e. with light loading or on very stiff soil) the loops pass nearly
through the centre (M¼θ¼0) of the coordinate axes and the residual settlement is negligible; both are
a consequence of the predominantly geometric non-linearity in the form of separation of the walls
and uplifting of the base from the soil. On the contrary, with low FSV values (heavy loading or soft soil)
and deeper relative embedment, broad hysteresis loops and accumulating settlement are the rule – a
product of material inelasticity of the soil, under limited soil–foundation detachment.
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interaction; stiffness

INTRODUCTION
Static foundation design calls for avoiding failure of the
soil–foundation system, and ensuring that the system dis-
placements will be compatible with the desired structural
performance. Prediction of the ultimate ‘failure’ loads of a
foundation has traditionally been addressed in practice with
the conventional bearing capacity theory (Terzaghi, 1943;
Meyerhof, 1953; Brinch Hansen, 1970). The basis of this
theory is the algebraic expression of the ultimate vertical load
Nu as a function of the soil strength parameters, the soil mass
density and the foundation geometry. When vertical, horizon-
tal andmoment loading act simultaneouslyon the foundation,
to obtain the ultimate condition a series of ‘reduction’ factors
for inclination and eccentricity are applied toNu. The effect of
embedment is incorporated in the bearing capacity expression
with the use of semi-empirical depth factors increasing the
capacity over that of the surface footing with the same base
geometry. Although this traditional approach has gained
widespread acceptance in foundation engineering practice, its
quasi-empirical nature renders it just an approximation.
Moreover, it cannot be directly used in numerical one-step
soil–structure interaction analyses, as explained by Houlsby

(2003). To overcome drawbacks, many researchers (Butterfield
& Ticoff, 1979; Georgiadis & Butterfield, 1988; Nova &
Montrassio, 1991; Butterfield & Gottardi, 1994; Martin,
1994; Salencon & Pecker, 1995; Bransby & Randolph, 1999;
Gottardi et al., 1999; Houlsby & Puzrin, 1999; Taiebat &
Carter, 2000; Houlsby, 2003; Randolph & Puzrin, 2003;
Gourvenec, 2007, 2008; Yun & Bransby, 2007; Chatzigogos
et al., 2009;Randolph&Gourvenec, 2011) have developed the
concept of a ‘failure envelope’which in a Cartesian coordinate
system with axes the vertical force, N, the horizontal force, Q,
and the overturning moment, M, is the surface that indicates
bearing capacity failure for all possible NQM load com-
binations. When the point representing a particular load
combination plots inside this ‘failure envelope’, the foun-
dation does not fail; when just touching the envelope, it
mobilises a ‘failure’ mechanism and deforms inelastically.
On the other hand, seismic design of soil–foundation–

structure systems requires knowledge of the elastic or quasi-
elastic stiffnesses of the foundation, since these more-or-less
control the natural frequencies of the system, and hence
the loads that are transmitted from the structure to the
foundation. A significant effort has been spent on obtaining
static and dynamic stiffnesses of foundations; a wealth of
results has been published in the last 40 or more years, for
both uniaxial and combined loading on various idealised
soil profiles: compilations of such solutions have appeared in
papers by Roesset (1980), Gazetas (1983), Dobry & Gazetas
(1986), Pais & Kausel (1988) and Wolf (1988). The effect of
foundation embedment on stiffnesses has been studied
numerically, but expressed in a similar way as for the
bearing capacity: using closed-form depth-of-embedment
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‘correction’ factors to enhance the stiffnesses over those of
the surface footing with the same base geometry (Kausel &
Roesset, 1975; Tassoulas & Kausel, 1983; Wolf, 1985, 1988;
Gazetas, 1991). The historical developments in this soil–
foundation interaction field (albeit from a dynamic point
of view) have been presented recently by Kausel (2010), while
Dobry (2014) has compiled a wealth of solutions obtained
with simple, physically inspired methods.

In the last 10 or 15 years, studies of dynamic soil–
foundation–structure interaction have explored the idea that
under seismic (base) excitation mobilising the ultimate capa-
city of foundations may be beneficial for the whole system.
The concept of ‘rocking isolation’ has thereby emerged as an
alternative to the conservative – yet not safer – design of
foundations against strong seismic shaking (Pecker, 1998;
Martin & Lam, 2000; Faccioli et al., 2001; Paolucci et al.,
2008; Gajan & Kutter, 2008; Anastasopoulos et al., 2010a,
2012; Gazetas, 2015). As a result of these studies, the
response of foundations under cyclic loading mobilising the
ultimate capacities has become a key part of the seismic foun-
dation design – bridging the gap between static and dynamic
analysis.

Studies of the ultimate response of embedded foundations
refer mostly to strip and circular foundations, the external
surfaces of which are perfectly ‘glued’ to the soil (Bransby &
Randolph, 1999; Poulos et al., 2001; Yun & Bransby, 2007;
Gourvenec, 2008). These studies have focused mainly on
the undrained bearing capacity under combined loading,
modelling the soil as an elastoplastic continuum. Recent
studies treating the soil as an inelastic and tensionless
Winkler medium include those by Allotey & Naggar (2003)
and Gerolymos & Gazetas (2006a, 2006b, 2006c).

The aim of the current study is to extend previous work
in an effort to quantify the inelastic response of embedded
foundations. A series of three-dimensional (3D) finite-
element (FE) analyses are reported treating the soil as an
elastoplastic continuum in order to investigate

(a) the effect of embedment on the undrained capacity of
square-in-plan foundations under combined loading
for a fully bonded contact (FBC) of the foundation with
the soil; simple analytical solutions offer enhanced
understanding of the mechanics of the problem

(b) the effect of having a tensionless interface of limited
shear capacity (TSI) on the failure envelopes of an
embedded foundation

(c) the effect of embedment on the elastic stiffnesses in
rotation and horizontal translation of the foundation
in FBC with the soil; and the relationship of the effects
of embedment on (i) bearing capacity and (ii) stiffness

(d) the rotational (‘rocking’) response of simple but slender
structures on embedded foundations under monotonic
and cyclic displacement-controlled loading, driving
them to large deformations after their moment capacity
is reached.

Square foundations of various embedment ratios (0�
D=B�1) are considered under undrained loading conditions.
As depicted in Fig. 1 the problem is analysed in two different
phases. First (Fig. 1(a)), the bearing capacity of the soil–
foundation system is examined under combined monotonic
MQ loading applied directly at the foundation base level, not
accounting for second-order phenomena. Failure envelopes
are predicted in typical sections of the 3D load space.

In the second part (Fig. 1(b)), the entire soil–foundation–
structure system is modelled, where the superstructure is
represented by a rigid beam element with a lumped mass at
its top. The system is subjected to monotonic and

cyclic horizontal loading applied at the level of the lumped
mass. The load combinations are compatible with the
slenderness of the superstructure (i.e. the beam length) and
P–Δ effects are taken into account. Emphasis is placed on the
failure mechanisms, the comparison between the effects of
embedment on stiffness and capacity, the cyclic behaviour
and the residual deformations of the foundation.

Finite-element modelling
A series of 3D FE analyses are performed using Abaqus

(2008). A typical 3D FE mesh, taking advantage of problem
symmetry, is shown in Fig. 2. Soil and foundation are
modelled with eight-noded hexahedral brick-type elements,
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Fig. 1. Problem definition and symbols: (a) soil–foundation system
(load and displacement reference point at the base of the foundation);
(b) soil–foundation–structure system (load and displacement reference
point at base of structure (top of foundation))
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Fig. 2. Outline and dimensions of three-dimensional FE model
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non-linear for the former and elastic for the latter. Fully
integrated first-order isoparametric elements are employed
for this purpose, in which the volume changes at Gauss
points are replaced by the average volume change of the
element. Such selective reduced integration (because the
order of integration is reduced in selected terms) helps
prevent mesh locking, providing accurate solutions even in
(nearly) incompressible materials. Its efficiency has been
verified in previous publications (e.g. Gazetas et al., 2013),
and through initial sensitivity and benchmark analyses for
the specific problem analysed herein.
The soil is a homogeneous clay stratum modelled as

an elastoplastic material (with parametrically variable un-
drained shear strength Su¼75–150 kPa, E=Su¼1800, γ¼
20 kN=m3) while the foundation is modelled invariably as a
rigid body. The base of the model is fixed in all three
coordinate directions. Special interface elements are used for
the soil–foundation interface, modelling two different con-
ditions as (‘artistically’) sketched in Fig. 3.

(a) Fully bonded contact (FBC): this is where the foun-
dation is assumed to remain in perfect contact with the
surrounding soil (Fig. 3(a)). Such contact has infinite
tensional and shear capacities, preventing separation
and slippage of the foundation from the soil.

(b) Tensionless sliding interface (TSI): in this case, separ-
ation (gapping) of the foundation from the soil, as well
as slippage at the soil–foundation interface, are per-
mitted (Fig. 3(b)). The latter obeys in total stress
analysis Coulomb’s friction law with φa¼0 and ca¼α
Su, while detachment and uplifting arise from the
tensionless interface behaviour. In the analyses pre-
sented herein, the adhesion coefficient, α, was set equal
to 0·80.

Soil modelling
The non-linear soil behaviour is modelled through a

simple kinematic hardening model with Von Mises failure
criterion and associated flow rule. The evolution law of the
model consists of two components: a non-linear kinematic
hardening component which describes the translation of the
yield surface in the stress space (defined through a ‘back-
stress’ parameter β), and an isotropic hardening component
which defines the size of the yield surface σ0 as a function of
plastic deformation. The pressure-independent yield surface
of the model according to the Von Mises failure criterion is
defined through the following function F

F ¼ f ðσ � βÞ � σ0 ð1Þ
The model hinges on three parameters: the elastic Young’s

modulus E, the ultimate strength σu and the yield stress σ0.
The evolution of the kinematic component of the yield stress

is defined as

α̇ ¼ C
1
σ0

ðσ � αÞ ˙̄εpl � γα ˙̄ε
pl ð2Þ

where C is the initial kinematic hardening modulus
(C¼σy=εy¼E¼2(1þν)Go) and γ is a parameter determining
the rate of decrease of the kinematic hardening with
increasing plastic deformation. In the case of clay, the maxi-
mum yield stress can be defined as

σy ¼
ffiffiffi

3
p

Su ð3Þ
And since σy¼C=γþσ0, parameter γ can be expressed as

γ ¼ C
ffiffiffi

3
p

Su � σ0
ð4Þ

Parameter σ0 controls the initiation of non-linear behav-
iour and is defined as a fraction λ of the yield stress σy

σ0 ¼ λσy ð5Þ
Finally, C corresponds to the Young’s modulus for very

small strains.
Details on the calibration of the model parameters from

published experimental G–γ and ξ–γ curves (Vucetic & Dobry,
1991), and the reasonably satisfactory comparisons of its
predictions against centrifuge model tests and analytical
solutions, can be found in papers by Anastasopoulos et al.
(2011, 2012) andAdamidis et al. (2014). In all the analyses, the
calibration of parameters was based on the Vucetic & Dobry
(1991) G–γ curves for plasticity index of the soil, PI¼30.

Loading conditions
In the first phase (see Fig. 1(a)), displacement-controlled

monotonic loading was applied directly at the centre of the
foundation base. A fraction of the ultimate vertical bearing
capacityNuwas imposedasadirectvertical forceN, followedby
a displacement probe of constant ratio u=θ until the foundation
loaddoes not varywith increased displacement. In thewords of
Yun & Bransby (2007): ‘once the failure envelope is reached,
each loading path travels around the failure envelope until it
reachesaterminationpointwhere thedirectionof the tangent to
the failure envelopematches the prescribed displacement ratio’.
As associative flow rulewas assumed in the constitutive model,
the failure envelope serves also as the plastic potential surface,
with the direction of the incremental plastic displacement
vector at failure being perpendicular to that surface.
It is noted here that the selection of the load reference

point affects significantly the shape of the failure envelope
produced. In this paper the failure envelopes refer to the
centre of the foundation base, in order to be compatible with
numerous already published results.

Model validation
The constitutive model has been validated against physical

model tests (centrifuge, 1g, and large scale) for: (a) surface
and embedded foundations subjected to cyclic loading
and seismic shaking (Anastasopoulos et al., 2011, 2012);
(b) piles subjected to cyclic loading (Giannakos et al., 2012);
(c) bar-mat retaining walls subjected to seismic shaking
(Anastasopoulos et al., 2010b); and (d ) circular tunnels
subjected to seismic shaking (Bilotta et al., 2014; Tsinidis
et al., 2014). The latter two offer an independent validation,
as part of a carefully planned round robin numerical test
using centrifuge model tests conducted at the University of
Cambridge (Lanzano et al., 2012). Despite its simplicity, the
model was shown to perform very well, in many cases out-
performing more sophisticated models (Bilotta et al., 2014).
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Fig. 3. Sketched representation for the meaning of soil–foundation
interface conditions: (a) FBC; (b) tensionless and potentially sliding
interface – TSI
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The model is further validated herein against published
failure envelopes for embedded foundations subjected to
combined NQM loading. As mentioned earlier, most of the
available solutions are limited to plane-strain conditions.
For a meaningful comparison, the 3D FE model of Fig. 2
is transformed into an equivalent two-dimensional (2D)
model by considering only an appropriate ‘slice’. A FBC is
considered: sliding or detachment is disallowed. Several
analyses were conducted using different u=θ ratios to
produce the failure envelope for a certain plane in NQM
loading space. Fig. 4(a) shows the load paths for different
displacement probes in comparison with the respective
failure envelope of Gourvenec (2008) for an embedment
ratio D=B¼1. To the present authors’ satisfaction, the
terminal points of the load paths fall on top of, or sufficiently
close to, Gourvenec’s envelope. An additional validation for
D=B¼0·5 against the failure envelope of Vulpe et al. (2014)
for circular foundations and Gourvenec (2008) for strip
foundations is shown in Fig. 4(b).

NUMERICAL AND (SOME) ANALYTICAL RESULTS
The undrained bearing capacity of rigid embedded

strip foundations under combined NQM loading has been
extensively investigated by, among others, Yun & Bransby

(2007) and Gourvenec (2008), who considered plane-
strain (2D) conditions and a fully bonded soil–foundation
contact. The current study extends these results: (a) to the
3D problem of a square embedded foundation; and (b) to
the case of a tensionless interface which accommodates
both separation and sliding (the latter when a certain
fraction, α¼0·80, of the soil undrained shear strength is
reached: fS¼0·80 Su); (c) to the comparative study of the
influence of embedment on stiffness against that on ultimate
capacity; and (d ) to the response under quasi-static cyclic
loading coming from lateral loading on top of a slender
structure.

FULLY BONDED CONTACT
Lateral bearing capacity and elastic stiffness
Numerical results from the 3D FE analysis (FEA) of

square-in-plan embedded foundations are presented and
compared with those of the corresponding plane-strain
analyses. Thanks to the additional two side surfaces, parallel
to the direction of loading, the square foundation enjoys
increased soil resistance beyond the one experienced by an
equivalent embedded strip (2D) foundation – for all modes of
loading: vertical, horizontal and moment. Furthermore, the
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Fig. 4. (a) Model validation for the two-dimensional plane-strain problem withD=B=1 andN=Nult=0·5: comparison of theMQ failure envelope
of Gourvenec (2008) (continuous line) with the terminal points of probe lines (of constant u=Bθ) of the present analysis. (b) Model validation for
D=B=0·5 andN=Nult=0·5: comparison of theMQ failure envelope of the present study to that of Vulpe et al. (2014) for circular foundations and
Gourvenec (2008) for strip foundations
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unavoidable three-dimensionality of the failure mechanism
elicits increased soil resistance, as explained below.
Horizontal translation (without rotation). A simple

failure mechanism aimed merely at illustrating the origin
of the effect of embedment is depicted in Fig. 5. The lateral
bearing capacity Qmax of a square embedded footing
is examined under pure horizontal translation (rotation
θ¼0). In two dimensions the foundation ultimate hori-
zontal capacity 2dQmax could be obtained roughly as the
superposition of the ultimate base shear (2dQbase), which
is essentially equal to the ultimate shear force 2dQuo of
a surface footing (2dQuo� 2dQbase�Su Abase) and the passive-
minus-active force (2dPpassive–

2dPactive) obtained from
Coulomb-type plane-strain analysis (here assuming a
circular sliding surfaces motivated by the FE obser-
vations of, say, Fig. 9). For such type of analysis (but
using a rigorous method) Gourvenec (2008) has fitted
the following expression to the numerical results for the
maximum horizontal load as a multiple of the corresponding
load of the surface footing

2dQmax � 2dQuo½1þ 5�56ðD=BÞ� ð6Þ

Interestingly, for the elastic horizontal stiffness of a strip
foundation, the effect of embedment is much less significant
(Gazetas, 1983, as modified recently by Lekkakis, 2012)

2dKH � 2dKHO½1þ 1�2ðD=BÞ� ð7Þ
For example, for D=B¼1, the increase in stiffness due to

embedment is only about 1=3 of the corresponding increase
in bearing capacity. Here are two possible culprits of such a
greater effect of embedment on ultimate load as opposed to
its effect on stiffness.

(a) The most significant: the sidewall (vertical) surfaces at
small elastic deformations invoke a disproportionately
small soil reaction; because each sidewall can be viewed
as nothing more than a vertical strip at the edge of a
homogeneous quarter-space (i.e. the space between the
horizontal surface from the footing edge to infinity
along the x-axis, and the vertical axis passing along the
sidewall, as sketched in the insert of Fig. 5); that strip is
loaded horizontally (i.e. perpendicularly to its surface).
Recall that on a homogeneous half-space the normal
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Tsidewall

Tsidewall
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Upon a 90° rotation
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Su Su
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Qmax
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Fig. 5. (a) Estimation of maximum horizontal capacity of three-dimensional embedded foundations with finite plan dimensions: isolation of a slice
of soil which slides against the surrounding soil. (b) Sketch illustrating the role of the sidewall that is normal to the direction of loading
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stiffness, Kv, of a strip is vanishingly small. It will be
even smaller on a quarter-space. This is because on a
homogeneous half-space an infinitely long and uni-
formly loaded strip leads exactly to infinite displace-
ment – vertical or horizontal, depending on the loading
direction (normal or shear). Hence Kv (or KH)!0. This
is an unequivocal result (a fact) of the theory of
elasticity. Naturally, in real life neither a homogeneous
half-space (i.e. a homogeneous medium of infinite
depth) nor a strip loading (i.e. of infinite extent) can
exist. The soil will become inhomogeneous or meet a
stiff soil layer or rock at some depth, H. In such a case
Kv decreases as H=B increases. But this has nothing to
do with the idealisation of the embedded foundation –
the side soil extends to infinity in the horizontal direc-
tion. By contrast, the (Coulomb-type) sliding wedge
is of limited extent, and the resulting passive resis-
tance is relatively huge (requiring of course a very
large deformation). The ‘true’ failure mechanism from
the FEA, to be discussed later in this paper, elucidates
this point. Hence the much greater contribution of the
side walls to the overall foundation capacity rather than
stiffness.

(b) The small-deformation elastic regions below the
base and in front of the sidewalls affect each other
(a base-to-side interaction), thus reducing the overall
stiffness to a smaller value than what the summation
of their effects would provide; at failure, however,
the mechanism comprises three more-or-less indepen-
dent sliding surfaces, and therefore the ultimate
load is essentially the sum of the respective three
resistances.

Now, under 3D conditions, two additional foundation
sidewalls are available, parallel to the loading plane resisting
in pure shear the horizontal translation. The maximum
additional force is given by

Tsidewall � SuAsidewall ¼ 2� BDSu ð8Þ
Furthermore, the simple mechanism of Fig. 5 consists

of two quarter-cylinder Coulomb-type sliding wedges,
as would have also been appropriate for the 2D problem;
but now, additionally, the four sides of the two cylinders
experience shear stresses Su from the outside un-deforming
soil. Hence the passive-minus-active force increases by

Fsidesoil � SuπD2=4� 4 ¼ SuπD2 ð9Þ
Therefore, assuming for simplicity that the three partial

mechanisms act independently, an upper-bound estimate for
the maximum horizontal force of the square-in-plan
embedded foundation would be

Qmax=Quo � Qmax=B
2Su

� ½1þ 5�56ðD=BÞ� þ ½2ðD=BÞ� þ ½πðD=BÞ2�
ð10Þ

in which Quo�B2Su is the ultimate horizontal capacity of a
surface square foundation. Fig. 6 compares the Qmax=B

2Su
plotted against D=B relationship from the FEA with the
above approximate expression. Given the simplicity of the
failure mechanism (hardly optimised) for the passive and
active resistance, equation (10) is surprisingly (and perhaps
fortuitously) accurate.

Admittedly, however, whereas equation (10) is independent
of the vertical load N acting on the foundation, the
FEA gives results that are slightly affected by the vertical
load N. This explains the approximate equality sign between

Quo and B2Su in the above expressions. In fact, although not
thoroughly reported in this paper, relevant numerical
simulations show that the effect of vertical load becomes
significant only progressively (with increasing N ) when
approximately

N . 3B2Su � Nuo=2 ð11Þ
in which Nuo is the ultimate vertical capacity of the surface
foundation, as it will be shown subsequently. As an example,
for D=B¼1, notice in Fig. 6 (as well as in equation (10)) that

Qmax=B2Su � Qmax=Quo � 11�5 ð12Þ
which is a very substantial effect, indeed.
Again, compare the above with the elastic horizontal

stiffness of a square-in-plan foundation with the same
embedment D=B¼1 (Gazetas, 1991; Lekkakis, 2012)

KH=KHO � ½1þ 0�21ðD=BÞ0�5�½1þ 1�57ðD=BÞ0�8�
� 3�1 ð13Þ

where

KHO � 9GB=ð2� νÞ ð14Þ
is the elastic horizontal stiffness of the surface square
foundation. Notice that, once more, the effect of embedment
on the horizontal stiffness is an even smaller fraction (about
1=4) of the effect on ultimate load. The explanation is as
above for the 2D problem, but with four rather than two
sidewall surfaces participating now. Fig. 7(a) illustrates the
(purely horizontal) failure mechanism for two embedment
ratios (0·2 and 1), in the form of the vectors of displacement,
with superimposed as dark shadows the regions of large
plastic strains. It is interesting to observe that the plastic
strains tend to localise in well-defined shear bands. In such
cases, the problem can be mesh dependent and a sensitivity
analysis is required. Such a sensitivity study was performed
as part of the present study, leading to the selection of the
adopted FE mesh.
Rotation about the centre of the base. The overturning

moment, Mmax, producing a rotational failure without hori-
zontal displacement, is similarly affected by the presence of
the sidewalls that are perfectly bonded to the surrounding
soil. Fig. 8 plots the variation of Mmax=BASu against D=B
from the FEA.
To compare the 3D results of this figure with the 2D

effects of embedment, recall again the plane-strain
analysis of Gourvenec (2008), who has fitted the following
expression to her numerical results for the maximum
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Fig. 6. The two horizontal capacities Qmax (zero rotation) and Qult
(zero moment) from the FE analysis and the simplified model, as
functions of the embedment ratio D=B. FBC, N=0
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moment

2dMmax �2d Muo½1þ 1�59ðD=BÞ þ 3�22ðD=BÞ2� ð15Þ
where 2dMuo is the ultimate moment of the fully bonded
surface strip foundation.
As an example, for D=B¼1, equation (15) yields an

ultimate moment ratio 2dMmax=
2dMuo�5·8. This can be

compared with the effect of embedment on the elastic
rotational stiffness of a strip foundation

2dKR=
2dKRO � 1þ 2 D=Bð Þ ¼ 3 ð16Þ

where the rotational stiffness of the surface strip (per unit
running length) is

2dKRO ¼ πGB2=½8ð1� νÞ� ð17Þ
The effect of embedment on stiffness is now more sub-

stantial, but still about 1=2 of the effect on ultimate rotational
capacity. The cause of this increased relative importance
of embedment on stiffness will be discussed and explained
below.
The 3D square-in-plan embedded foundation studied here

would potentially benefit from the following additional
contributions to resistance over and above the embedded
strip footing.

(a) The base now is square rather than strip; the failure
mechanism is different and the ultimate pure moment
of the fully bonded footing is approximately

Muo � SuBA ð18Þ
(b) The two sidewalls that are parallel to the direction of

loading undergo a torsional-type movement about the
horizontal axis passing from the centre of the base, thus
contributing by an amount

MT;sidewall � SuBD�D=2� 2 ¼ SuBD2 ð19Þ

(c) The two sidewalls that are perpendicular to the loading
direction undergo a movement which can decomposed
into avertical and a horizontal translation of their centre,
equal to θΒ=2 and θD=2, respectively, and rotation θ
around their centroidal horizontal axis (rocking). Of
these, the vertical movement invokes shear resistance and
its ultimate value AsidewallSu is the same, equal to 2�
BDSu, for the strip and the square. Hence no correction
above what applies to the strip is needed. For the rotation
and the horizontal compression, the aforementioned
correction shape factorof 1·2 would arguably be anupper
bound above what applies to the strip. Hence, assuming
for now independence of each contributing movement,
gives as an average the factor: (1þ 1·2þ 1·2)=3 � 1·13.
In fact, since some interplay among these three com-
ponents of ultimate resistance is unavoidable, this small
correction factor will be ignored altogether, accepting
that the second factor on the right-hand side of

(a) (b)

Fig. 7. Displacement vectors at two failure loads: (a) atQmax (with zero rotation); (b) atMmax (with zero horizontal displacement). Top row:D=B
=0·2; bottom row D=B=1. Grey shades indicate the location of high concentration of shear strains, revealing the failure mechanisms. FBC
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N=0
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Gourvenec’s equation (15) adequately describes the
contribution of the two perpendicular sidewalls. Hence,
as a crude approximation, the maximum moment is

Mmax � Muo½1þ 1�59ðD=BÞ þ 4�22ðD=BÞ2� ð20Þ
which for the example of D=B¼1 gives for the nor-
malised moment: Mmax=Muo�6·8. In Fig. 8 the FEA
gives a larger value, 7·5. Given the crudeness of the
above simple upper-bound analysis, its performance is
quite acceptable.

Again it is worth comparing the above with the effect of
embedment on the elastic rotational stiffness of the foun-
dation for D=B¼1. From the aforementioned publications

KR=KRO � f1þ 1�3ðD=BÞ½1þ ðD=BÞ�g � 3�6 ð21Þ
It is quite interesting to notice that the effect of embed-

ment on stiffness for this mode of loading is about 0·60 times
the corresponding effect on the (‘true’) bearing capacity.

Table 1 compiles the above comparisons between the
aforementioned effects of embedment on capacity and
stiffness for horizontal and rotational loading. It is clear
that in both 2D (strip) and 3D (square) situations

(a) the rotational stiffness increases approximately by 1=2
to 2=3 as much as the increase in maximum (over-
turning) moment

(b) the horizontal stiffness increases approximately by only
1=4 to 1=3 as much as the increase in maximum
(horizontal) force.

A simple explanation for the relatively increased effect on
the rotational stiffness could be unravelled from the previous
discussion: any rectangular footing of width B on a halfspace
subjected to moment loading (in rocking or torsion) affects
only a limited volume of soil; in the traditional geotechni-
cal jargon, it produces elastic ‘stress bulbs’ of very limited
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Fig. 9. (a) MQ interaction envelope with the direction of plastic deformations at four key points, along with displacement vectors and
concentration of shear strains revealing the failure mechanisms at the above four points. FBC,D=B=1. The solid dots in the pictures represent the
instantaneous rotation pole of the foundation. (The pole is at infinity for the horizontal translation case, C.) (b) Change of the form of the
interaction MQ diagrams by changing the reference point (left: foundation base (see Fig. 1) as with the previous figures; middle: centre of gravity
(mid-depth) of the foundation; right: foundation top surface)
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extent – one-fourth (1=4) to one-eighth (1=8) of the width B
(Poulos & Davis, 1974). In contrast, force loading (in shear or
normal mode) produces ‘stress bulbs’ that go much deeper –
one to two times the width, respectively. But smaller affected
area means smaller total displacements–rotations, and there-
fore larger stiffnesses. Hence, the sidewalls in rotational
modes exhibit much greater stiffness than in translational
modes; this explains the trend of Table 1. The difference
between the two modes of loading is even larger in the 2D
plane-strain problem. The reason: the sidewalls are (infinitely
long) strips in this case, possessing negligible stiffness in force
loading (theoretically, zero), but offer appreciable stiffness in
rocking about the long horizontal axis.

FAILURE ENVELOPES
MQ interaction (with N¼0)
So far, aspects of the maximum horizontal load Qmax and

of the maximum overturning moment Mmax have been
studied separately. Of course, it was a combination of Q
and M that led to these two limit values: a moment was
necessary to nullify the rotation as required for Qmax and a
horizontal force to nullify the horizontal displacement as

required for Mmax. But these were merely two MQ combi-
nations out of infinite possibilities. The full interplay between
the limiting values ofQ andM, comprising all combinations,
is portrayed in Figs 9(a) and 10, in the normalised form:
M=BASu plotted againstQ=ASu for two values ofD=B, 1 and
0·2. The vertical load, N, which also affects the QM inter-
action, is taken as 0 in both figures. Figure 9(b) is only meant
to illustrate the fact that the shape of the failure envelopes
depends strongly on the point which M, Q, u and θ refer to.
Of course, the information conveyed by each of the three
different sets of envelopes (interaction diagrams) for the three
reference points (base, middle, top) is exactly the same.
In Figs 9(a) and 10 the location of Qmax and Mmax is

shown at the two extremes of the envelope, where the normal
lines to the envelope (the ‘failure surface’) are parallel to the
horizontal and vertical axes, respectively. This is a conse-
quence of the associated flow rule adopted in the present soil
constitutive model (preservation of normality). Also indi-
cated in the figures are the two limit values of the purely
horizontal-force (M¼0) and purely overturning-moment
(Q¼0) loading, denoted as Qult and Mult, respectively
(adopting the terminology of Gourvenec). The normal
vectors to the envelope at these latter locations point to the

Table 1. Comparison of the effects of embedment on ultimate loads and elastic stiffnesses for square (Q, K) and strip (2dQ, 2dK ) foundations:
results of FEA. D=B=1

2dQmax=
2dQuo

2dKH=
2dKHO Qmax=Quo KH=KHO

2dMmax=
2dMuo

2dKR=
2dKRO Mmax=Muo KR=KRO

6·6 2·3 11·5 3·1 5·8 3·0 7·5 3·6
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u
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D
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2·0
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0
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Fig. 10. Graphical representation of MQ interaction envelope with the direction of plastic deformations at four key points. Four offset diagrams
show displacement vectors and concentration of shear strains revealing the failure mechanisms at these points. FBC, D=B=0·2. The solid dots in
the pictures represent the instantaneous rotation pole of the foundation. (The pole is at infinity for the horizontal translation case, point C, and
‘almost’ infinity at point D.)
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negative M and Q axes, respectively – indicative of negative
(counter-clockwise) rotation and negative (on the x-axis)
displacement, respectively. This behaviour can be visualised
in the inserted four snapshots of the vectors of displacement
(with the concentration of plastic shear strains superimposed
as shadows), for each of the four limit loads discussed here.
They correspond to pure horizontal load, pure horizontal
translation, pure moment and pure rotation, respectively.

Figures 9(a) and 10 reveal a significant effect of embed-
ment, not only on the values of the various limit loads but
also on the shape of the envelope; the latter becomes
increasingly skewed with increasing (relative) depth, D=B.
As a result, the maximum moment capacity Mmax (which
occurs in the presence of positive horizontal load, applied
always at the base) increases disproportionately more than
the increase of Mult. Indeed, the ratio Mmax=Mult attains
(approximately) the values of

(a) 1·75 for D=B¼1
(b) 1·10 for D=B¼0·2

Similar are the trends of the Qmax=Qult ratio, which is
equal to

(a) 1·60 for D=B¼1
(b) 1·02 for D=B¼0·2

For the surface foundation, that is, D=B¼0, both ratios
approach 1, as there is negligible coupling ofM and Q under
fully bonded contact and N¼0, as considered here.

To further elucidate the role of embedment on the shape of
the QM failure envelopes, Fig. 11 compares the four en-
velopes (for D=B¼0, 0·2, 0·5 and 1) as plotted in the nor-
malised coordinate system: M=Mult plotted against Q=Qult.

It is also worth observing the failure mechanisms at Qult
and Mult in the inserts in Figs 9 and 10. Under pure moment
loading, at Mult, applied at the foundation base level, a
scoop mechanism is observed with its rotation pole
(indicated with the solid dot in the figure) located approxi-
matelyD=2 above the base, that is, at the foundation centre of
gravity. The foundation response is therefore mainly
rotational, but it is also accompanied by a negative hori-
zontal translation. The latter, as indirectly evidenced by the
oblique intersection of the failure envelope with the moment
ordinate axis, is substantial only for the deeper foundation
(D=B¼1); it is of marginal importance for the shallow
foundation (D=B¼0·2), and would hardly exist for a surface
foundation.

On the contrary, under purely horizontal loading, atQult, a
reverse scoop mechanism is formedwith its centre of rotation
moving up near the soil surface – nearly a pendulum. Thus,
failure consists of (nearly equally important) horizontal
translation and counter-clockwise rotation. In this case, the
obliquity of the intersection of the envelope with theQ axis is
appreciable even for the shallow foundation (D=B¼0·2).
At the limiting value Qmax of exclusively horizontal dis-

placement, the failure mechanism is quite different: sliding of
the foundation–soil system develops, with active and passive
failure on the front and back side of the foundation, and
shear at the base and at the two parallel sidewalls, as already
discussed. (Notice in passing the nearly circular (in cross-
section) failure mechanisms on both the active and passive
sides, justifying the simplified mechanism invoked in the
preceding section to obtain equation (9).) At the limit value
for pure rotation, Mmax, the failure mechanism is composite:
spheroidal failure surface below the base, active and passive
wedges on the upper part of the normal sidewalls, and
torsional shear on the parallel sidewalls.

QN interaction (with M¼0)
The significance of the vertical load for the ultimate

value Qult of a solely horizontal lateral load (M¼0) is
portrayed in Fig. 12, for four values of D=B: 0, 0·2, 0·5,
1. More specifically: in Fig. 12(a) in the form of Qult=ASu
plotted against N=ASu and in Fig. 12(b) in the normalised
form Qult=Qult,N¼0 plotted against N=Nult,Q¼0. Also plotted
in Fig. 12(a), for a mere comparison, are the corresponding
2D curves of Gourvenec (2008) for the strip foundation
(in which case A¼B). Observe in Fig. 12(b) that the
differences between the normalised curves as functions of
D=B are barely if at all distinguishable; also indistinguishable
would be the square (3D) and strip (2D) normalised curves
(and which are thereby not shown) – proofs of nearly
identical shapes of envelopes for both types of foundations
(strip and square) and all embedment ratios!
Note in Fig. 12 that for low vertical loads compared to the

vertical capacity, N=Nult,Q¼0,0·5, or equivalently for safety
factors FSV against vertical bearing capacity mobilisation
exceeding 2 (a most frequent situation in practice), the
horizontal capacity remains almost constant, regardless
of the axial force magnitude. This is true for all examined
embedment ratios. However, an abrupt reduction in load-
carrying capacity is noticed at higher vertical loads, with
Qult=Qult,N¼0 dropping to about 0·5 for an (admittedly very
small) FSV¼1·11 (i.e. N=Nult,Q¼0¼0·9).

MN interaction (with Q¼0)
The significance of the vertical load for the ultimate

value Mult of a purely moment loading (Q¼0) is portrayed
in Fig. 13, for four values of D=B: 0, 0·2, 0·5, 1. More
specifically: in Fig. 13(a) in the form of Mult=ABSu plotted
against N=ASu and in Fig. 13(b) in the normalised form
Mult=Mult,N¼0 plotted against N=Nult,M¼0. Also notice
in Fig. 13(a), for a mere comparison, the corresponding 2D
curves of Gourvenec (2008) for the strip foundation (in which
case A¼B). Again, in Fig. 13(b) the strip (2D) normalised
curves would be indistinguishable from the 3D ones if they
were shown – proof of nearly identical shapes of the
envelopes for both types of foundations and for all studied
embedment ratios!
Now the vertical load plays a slightly greater role than for

the horizontal capacity. Again, at low values of N=Nult,M¼0
the effect of N on the Mult is negligible, but the limit now is
N=Nult,M¼0,0·3 rather than 0·5. This is true also for all
examined embedment ratios. However, an abrupt reduction

M
/M

u/
t
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D/B increasing
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Fig. 11. Normalised MQ interaction envelopes for four embedment
ratios D=B=0, 0·2, 0·5, 1. FBC, N=0
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in load-carrying capacity is noticed at higher vertical loads,
with Mult=Mult,N¼0 dropping to about 0·5 for the very small
FSV¼1·25 (i.e. N=Nult,M¼0¼0·8).

TENSIONLESS, POTENTIALLY SLIDING
INTERFACE (TSI)
MQ envelopes with N�0
A very substantial reduction of the effects of embedment

ensues when the five interfaces of the foundation with the soil
are incapable of transmitting (net) tensional normal stresses
and shear stresses that exceed the adhesive stress fS¼αSu.
Hence, separation aswell as sliding of parts of thewalls or the
base from the surrounding and underlying soil is a possibility.
Figure 14 shows the MQ envelope for the D=B¼1 for

a foundation with TSI, along with the snapshots of the
displacement vectors and the high plastic shear strain
‘shadows’. This figure should be compared with Fig. 9 for
the same foundation but with FBC, to get an idea of the
effects of separation and sliding. Notice the following points.
(a) For all combinations of Q and M the limiting values of
Fig. 14 decrease due to TSI, and the skewedness of the
envelopes seen in Fig. 9 substantially diminishes, being
barely distinguishable for the smallest embedment ratios,

D=B¼0·2, examined. (b) The failure mechanisms at the
four limit points (A–D) seem to consist of only a part of
the mechanisms of the FBC analysis of Fig. 9 since, as a
consequence of separation, failure is restricted locally in the
close vicinity of the particular interface. For instance, at point
C of Qmax all the back side of the wall loses contact with the
soil, and thus no active wedge develops.
At point B of the D=B¼1 foundation, corresponding

to Mmax, the TSI mechanism in front and back of the
normal-to-loading-direction sidewalls, as well as the one
below the base, are almost half (in a qualitative sense) of the
FBC mechanisms. The separation of the back wall is due to
the combined effects of the clockwise moment M¼Mmax
and the positive Q required for keeping the base horizontal
translation equal to 0.
On the other hand, at the Mmax point B of the D=B¼0·2

foundation, the TSI mechanism is altogether different:
instead of the scoop mechanism of the FBC foundation of
Fig. 9, a Brinch–Hansen-type (1953) wedge is evident.
Figure 15 compares the dimensionlessMQ envelopes from

the FBC and the TSI analyses, for the fourD=B ratios (0, 0·2,
0·5, 1). This graph refers to a relatively small but non-zero
value of vertical load (N=Nult¼0·25) to allow comparison
with the D=B¼0 foundation. In the case of the TSI analysis,
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such comparison would not be possible for N=Nult¼0. This
comparison shows that the TSI curves are not only much
‘contracted’ compared to the FBC curves, but their shapes
are also quite different, with the skewness having almost
disappeared.

Moment against angle of rotation; soil reactions (u¼0,
N=0)
Although the ultimate capacity (moment or horizontal)

of an embedded foundation under undrained conditions is
only marginally affected by the vertical load,N, as long as the
latter does not exceed 1=2 to 1=3 of the vertical bearing
capacity, Nult¼Nult,M¼Q¼0, it is worth studying the complete
moment–rotation curves for a very large factor of safety and
for more usual factors of safety: FSV¼Nult,M¼Q¼0=N¼14
and 3, representing lightly loaded foundations (or strong soil)
and heavily loaded foundations (or weak soil), respectively.
The two curves are plotted in Fig. 16. In both cases, the total
resisting moment initially increases linearly with rotation
angle. The corresponding zero-angle-of-rotation stiffnesses
are only very slightly different (difficult to discern in the scale
of the figure), because, as was quantitatively shown by
Gazetas et al. (2013) and Adamidis et al. (2014), the heavily
loaded (in the vertical direction) foundation induces
more plastic deformation in the underlying soil and hence
depresses slightly even its lateral effective stiffness. But as
soon as initiation of either separation=sliding at the inter-
faces, or soil yielding, or both, take place, a gradually
softening rocking behaviour is observed until the resisting
moment reaches its maximum value. Overall, the behaviour
of the two foundations is quite similar.
The distribution of soil reactions on the foundation walls is

also portrayed in this figure, for four different stages of
loading. Only normal stresses are shown on the two vertical
walls (front and back) and the base.
At loading points A, compressive and tensile stresses

develop along the foundation periphery. Superimposed on
the static (gravity-induced) compressive earth pressures they
result in an increase of normal stresses in the compression
area and a decrease of stresses in the tension area. In the
upper half of the back wall, because of the interface’s
inability to sustain pure tension, separation seems to have
already occurred at very small angles of rotation. By the time
points B are reached, the above picture has become clearly
distinguishable.
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As the load increases (points C), ultimate soil reactions
seem to have been mobilised near the top of the front sidewall
and near the bottom of the back sidewall, similarly on the
two foundations. The separation of the back sidewall from
the soil has gone deeper in both cases. However, the response
at the bases of the heavily and the lightly loaded foundations
differ substantially: uplifting of half the base takes place
under light (vertical) loading, while compression is still
transmitted under the whole heavily loaded base. This is
reminiscent of the response of surface foundations that has
been amply demonstrated both theoretically and experimen-
tally (Paolucci et al., 2008; Anastasopoulos et al., 2010a,
2012; Deng & Kutter, 2012): uplifting dominates with large
FSV, whereas soil yielding and failure mechanisms dominate
with small FSV.
With further increase in imposed rotation, the contact

areas of the sidewalls become somewhat larger (a small
reversal of the previous trend) and the soil reactions increase.
The base remains almost in full contact (even if barely) under
the heavy load. Also unchanged is the area of uplifting of the
base under the light load (half of the base remaining in
contact). One can appreciate that there is a more-or-less
stable distribution of soil stresses beyond point D, in both
cases.

CYCLIC LOADING AT LARGE DEFORMATIONS
Rotational response for slender structures: surface foundation
All the results in this section refer only to the non-linear

TSI. In general, the response of foundations under strong
lateral cyclic loading coming from the superstructure
involves rocking, swaying and settlement. Any of these
modes can be significant, but for slender structures (say,
with h=B.1) rotation dominates over horizontal translation.
Thus, to simplify the picture of cyclic response, purely
horizontal displacement is not discussed here.

In this section the authors explore the significance of
embedment (D=B) on the cyclic rotational (‘rocking’) behav-
iour not just of an isolated foundation, but rather of a
foundation supporting a simple rigid structure of weight W
located at a height h from the foundation top. With
tensionless and potentially sliding soil–foundation interfaces
(TSI), in addition to the amplitude of loading, the main
parameters to investigate are the vertical static factor of
safety, FSV, and the slenderness ratio, h=B; recall Fig. 1(b). A
rotation-controlled loading is applied to the structure–
foundation system. The loading protocol shown in Fig. 17
comprises six cycles of progressively increasing angle of
rotation θ from 0·0025 rad to 0·08 rad (i.e. 2·5 to 80 millirad),
covering the range from quasi-linear to highly non-linear
response. The rotation is imposed applying a lateral
displacement at the mass, as shown in Fig. 1(b). The mass
is adjusted appropriately in order to achieve the desired FSV
for each case studied. Constant-amplitude multi-cycle tests
have also been performed.
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Developed dimensionless moment–rotation (M=BASu
plotted against θ) curves now refer to the base of the
structure rather than of the foundation, as was the case until
now. These curves are presented along with the correspond-
ing dimensionless settlement–rotation (w plotted against θ)
curves as follows: in Figs 18 and 19 for surface foundations
(D=B¼0), and in Figs 20 and 21 for embedded foundations
with D=B¼0·5 and 1. Two FSV values are explored: 5 and 2,
representing, respectively, lightly loaded structures (or strong
soil) and heavily loaded structures (or soft soil). The
slenderness ratio, h=B, is varied parametrically (¼ 1 and 3)
for the surface foundations, but is kept constant (¼ 1) for the
embedded ones.

For the surface footings, Fig. 18 for the very slender
supported structure (h=B¼3) shows a decline of the mono-
tonic (‘backbone’) curves after the ultimate moment has been
reached, for both FSV values. This decline is a consequence
of the P–Δ effect which stems from the additional moment
ΔM¼W(h sin θ) generated by the eccentricity of the weight
of the structure W as it displaces horizontally by h sin θ�hθ.
ΔM aggravates the consequences of loading, leading to a
post-peak decline of the moment capacity. Of course, the
phenomenon is conspicuous only at large angles of rotation;
it is barely distinguishable at relatively small angles, even
after slight exceedance of the maximummoment, as could be
seen in this figure (and will be more obvious in the next
figures). And as will be shown later, P–Δ is significant mainly
for surface (or very shallow) foundations. It is particularly
significant for a relatively rigid structure on a rigid base
(Makris & Roussos, 2000; Apostolou et al., 2007;
Panagiotidou et al., 2012).

A broad similarity is noted in the shape of the two (static)
monotonic curves, although the heavily loaded footing
(FSV¼2) experiences larger moment capacity, as of course

was expected even from the Meyerhof bearing capacity
solution, but reaches the overturning angle (�011 rad, where
the curve crosses the 0 axis) sooner than that of the lightly
loaded FSV¼5 foundation (�019 rad at the projection of the
curve).
In both cases the monotonic curves clearly ‘envelop’ the

loops of the (slow) cyclic tests. Hence, the MQN interaction
diagrams presented in the paper are also valid for cyclic
loading – an important conclusion. Yet, despite their
similarities, the two different FSV foundations behave
distinctly differently.

(a) An uplifting-dominated behaviour is noted with the
lightly loaded foundation (FSV¼5), as evidenced
indirectly from the roughly-S-shaped M–θ loops (with
negligible residual moment each time the imposed
rotation returns to 0, implying a ‘re-centring’ capability
under cyclic excitation), and directly from the upward
displacement of the foundation centre seen in the w–θ
curves. Of course, despite such uplifting (or perhaps
because of it) there is a progressive recession (perma-
nent loss of contact) between the soil and the foun-
dation under the edges, which leads to the eventual
accumulation of a very small (downward) settlement,
and to an appreciable degradation of rotational stiff-
ness. (The latter is seen in the decreased slope of the
unloading–reloading lines.)

(b) A sinking-dominated response is noted with the heavily
loaded foundation (FSV¼2), as evidenced indirectly
from the roughly-O-shaped large inelastic loops in
M–θ, and directly from the accumulating downward
displacement in the w–θ curves – both phenomena
being a consequence of extensive cyclic soil inelastic
action.
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Fig. 18. Dimensionless moment–rotation and settlement–rotation response of a surface TSI foundation subjected to cyclic lateral loading:
(a) FSV=5; (b) FSV=2 (grey line corresponds to monotonic backbone curves). D=B=0, h=B=3
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Fig. 19. Dimensionless moment–rotation and settlement–rotation response of a surface TSI foundation subjected to cyclic lateral loading:
(a) FSV=5; (b) FSV=2 (grey line corresponds to monotonic backbone curves). D=B=0, h=B=1
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Fig. 20. Dimensionless moment–rotation and settlement–rotation response of a D=B=0·5 embedded TSI foundation subjected to cyclic lateral
loading: (a) FSV=5; (b) FSV=2 (grey line corresponds to monotonic backbone curves). h=B=1
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The less slender system with h=B¼1 is studied in Fig. 19. In
general, the response of the two foundations is similar with
that of the corresponding foundations of the very slender
system in Fig. 18. The main differences are: the P–Δ effects
are in this case (understandably) less prominent, asW(h sin θ)
is reduced; the S-shape of the M–θ loops for FSV¼5 are not
as narrow at the centre; and the accumulated settlements are
larger for both foundations (FSV¼2 and 5). The latter may
come as a surprise (less settlement for the taller structure (of
the same weight)), but it is a natural consequence of the type
of applied loading: for an imposed large angle of rotation, the
total moment atop the foundation is about the same in the
two cases (h=B¼1 and 3); however, the contribution to this
moment of the (vertical) weight W (P–Δ effect) is 3 times
larger for the taller (h=B¼3) structure, and thereby the
corresponding moment due to the horizontal force is 3 times
smaller. Therefore, the horizontal shear force Q¼M=h
developing atop the foundation of the taller system is
somewhat smaller than the one coming from the shorter
one. Hence in the latter case, the increased Q leads to greater
inelastic action in the soil, resulting in greater residual
settlement.

The effect of embedment
Figures 20 and 21 show the effect of embedment (D=B¼

0·5 and 1) for h=B¼1 (only), and FSV¼5 and 2, as before.
The following points may be noticed.

(a) The monotonic backbone curves now barely show a
sign of P–Δ induced degradation up to an angle of
rotation of 0·12 rad; just a ‘suspicion’ of a decline with
the heavier load.

(b) The shape of the cyclic moment–rotation loops deviates
from that of the surface foundations as embedment

increases. Lateral loading of the embedded foundation
causes excessive plastic deformation of soil on one side
with a gap opening on the opposite side. An abrupt
decrease in M upon unloading is attributed to this
partial detachment (‘gapping effect’), because momen-
tarily both front and back of the sidewalls are not in
contact. Upon reversal, contact is re-established and
moment resistance slowly increases. Re-centring of the
foundation results in a partial loss of contact between
the sidewalls and the soil, as the plastically deformed
soil is not restored to its original state.

(c) With increasing number of loading cycles, the soil–
foundation gap, alternately forming on either side of the
foundation, progressively widens. This results in a
decreased resisting moment during unloading and
reloading. Notice that the monotonic curve is reached
only when the complete passive earth pressures come
into action. Thus, an abrupt increase in M occurs every
time the system approaches the angle of rotation
corresponding to the amplitude of the previous load
cycle.

(d) The differences between the lightly and the heavily
loaded system in the moment–rotation response become
less pronounced as D=B increases. In both cases, the
moment–rotation loops reveal a great potential for the
soil–foundation system to dissipate a large amount of
energy during cyclic loading.

(e) Remarkable differences, however, are noticed with
respect to the cyclically accumulating settlements as
a function of FSV. The reduced stresses transmitted
onto the base soil would be expected to produce less
settlement than for surface foundations. In fact, the
lightly loaded system ended up with negligible residual
settlement for both D=B¼0·5 and D=B¼1, after the
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Fig. 21. Dimensionless moment–rotation and settlement–rotation response of a D=B=1 embedded TSI foundation subjected to cyclic lateral
loading: (a) FSV=5; (b) FSV=2 (grey line corresponds to monotonic backbone curves). h=B=1
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first few cycles during which the footing alternately
uplifted and settled. On the other hand, the heavily
loaded system displayed a substantial residual settle-
ment of about 0·04B for D=B¼0·5 and 0·06B for
D=B¼1, as its response is characterised by minimal
uplifting and excessive soil yielding for the larger angles
of rotation.

The effect of loading amplitude on settlement
This is further investigated by imposing five cycles of

constant rotation amplitude, θ¼0·0005, 0·0025, 0·02, 0·05
and 0·1 rad. Four safety factors, FSV¼14, 5, 4 and 3, are
considered, whileD=B¼1. Thus, awide range of responses is
covered, from nearly elastic to strongly inelastic.
Figure 22 shows the final residual settlement plotted

against the imposed rotation amplitude. At relatively small
angles of rotation, increasing amplitude implies linearly
increasing settlement in all but the very large FSV case. At
larger rotation amplitudes, the rate of settlement increase
diminishes, until eventually settlements start levelling off or
even decreasing. As a result, at large angles of rotation the
lightly loaded systems end up with residual uplift, while the
heavily loaded systems end up with reduced settlement. The
‘turning point’ is a critical angle of rotation, which appears to
increase as the factor of safety decreases (for FSV¼3 this
critical angle has not been reached yet at 0·1 rad.)

SUMMARYAND CONCLUSIONS
The static response of embedded square-in-plan foun-

dations under undrained conditions has been studied with a
3D FE model. Soil (material) inelasticity and soil–foun-
dation interface (geometric and material) non-linearity have
been properly taken into account. Emphasis was given to the
ultimate capacity under combined lateral (horizontal and
moment) loading, but the role of the vertical force was also
addressed. Simplified models were developed with the sole
purpose of elucidating the phenomena observed numerically.
Some attention has been given to the effect of embedment on
elastic stiffnesses in pure horizontal translation and pure
rotation.
For the (slow) cyclic loading the focus has been on the

rotational response of embedded foundations carrying a
simple slender structure. Numerical moment–rotation (M–θ)
and settlement–rotation (w–θ) loops have been compared
with the monotonic curves of the system, with particular
emphasis on the importance of the static factor of safety FSV
against vertical ultimate capacity of the foundation. The

rotation exceeded substantially the angle of maximum
moment capacity of the foundation, and P–Δ effects played
their role in function of FSV and the depth of embedment.
An interesting finding, which had not been noted explicitly

in the literature before, was that the effect of embedment on
increasing bearing capacity is much larger than the effect
on increasing stiffness: almost four times larger for the
horizontal motion and two times larger for rotation. Physical
interpretations of these differences have been outlined.
At the soil–foundation interfaces detachment (with sub-

sequent gap formation) and slippage (with shear tractions
limited to adhesion) have been shown to exert a rather dram-
atic effect in reducing the size and even changing the shape of
the failure envelops. The relative magnitude of the vertical
load affects mainly the uplifting of the base; its effect on the
overall ultimate performance is limited.
Along theQM failure envelop of a fully bonded embedded

foundation the mechanisms of failure change significantly
from point to point. For the four characteristic points, Mult,
Mmax, Qmax, Qult, and an embedment D=B¼1, the observed
mechanisms are, respectively: a clock-wise rotation about a
point nearly 2=3 of D from the top (Mult); a mixed mode
consisting of rotation below the base about its centre and of
passive- and active-type wedges along the sides normal to the
direction of loading (Mmax); two clear wedges, a passive and
an active on each of the two sides, with simple slippage along
the base (Qmax); and a counter-clock-wise rotation about a
point at the top, like a pendulum (Qult). Of course, the two
sidewalls that are parallel to the loading plane experience
shear failure in all cases; that may involve mainly torsion,
or horizontal and vertical translation, or combinations of
these. With the non-linear (tensionless and sliding) interfaces,
the mechanisms for the above four loading combinations
change mainly due to the detachment that takes place; and
the previous symmetry is lost.
The cyclic response of embedded foundations is summar-

ised in the form of foundation moment–rotation (M–θ) and
settlement–rotation (w–θ) loops of a rotationally loaded
system. The former loops are well enveloped by the corres-
ponding monotonic curves. The latter loops show a small or
large accumulation of settlement. The static vertical factor
of safety FSV controls the nature of these loops, perhaps as
much as (and in some cases even more than) it affects the
value of the ultimate resistance. With high FSV, interface
(geometric) non-linearities prevail, with only minor inelastic
(material) action in the soil and hence a small accumulation
of settlement with number of cycles. The opposite is true
when FSV is small.
Closed-form expressions for the presented failure envelops

(although with the top of the foundation as the reference
point) have been given by Ntritsos (2012) and recently by
Karapiperis & Gerolymos (2014) and Zafeirakos (2014).
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NOTATION
Asidewall area of foundation sidewall (¼DB)

B width of footing
C initial kinematic hardening modulus
ca cohesion at soil–foundation interface (¼αSu)
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Fig. 22. Dimensionless residual settlement plotted against cyclic
rotation amplitude, for a D=B=1 embedded TSI foundation (five
cycles of constant rotation amplitude θ were imposed)
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D embedment depth (¼0, 0·2, 0·5, 1 m)
E Young’s modulus
Es undrained Young’s modulus of soil (¼1800Su)

Fsidesoil soil reaction force on vertical sidewalls
FSV factor of safety against exceeding the purely vertical

bearing capacity
fS limiting shear resistance
G shear modulus
Go small-strain shear modulus
h height of structural mass from foundation top (¼1 m,

3 m)
KH elastic horizontal stiffness of an embedded

square-in-plan foundation
KHO elastic horizontal stiffness of a surface square-in-plan

foundation
KR elastic rotational stiffness of an embedded

square-in-plan foundation
KRO elastic rotational stiffness of a surface square-in-plan

foundation
2dKH elastic horizontal stiffness of an embedded strip

foundation
2dKHO elastic horizontal stiffness of a surface strip foundation
2dKR elastic rotational stiffness of an embedded strip

foundation
2dKRO elastic rotational stiffness of a surface strip

foundation
M overturning moment

Mmax maximum moment capacity of an embedded
square-in-plan foundation

MT,sidewall torsional moment of the soil reactions on sidewalls
Mult purely moment capacity
Muo maximum moment capacity of a surface square-in-plan

foundation
2dMmax maximum moment capacity of an embedded strip

foundation
2dMuo maximum moment capacity of a surface strip

foundation
m mass of superstructure
N vertical force
Nu ultimate vertical load of embedded square-in-plan

foundation
Nult purely vertical capacity
Nuo ultimate vertical load of a surface square-in-plan

foundation
2dNuo ultimate vertical load of surface strip foundation
Pactive limiting active force
Ppassive limiting passive force

Q horizontal force
Qmax maximum horizontal load of an embedded

square-in-plan foundation
Qult purely horizontal capacity
Quo maximum horizontal load of a surface square-in-plan

foundation
2dQmax maximum horizontal load of an embedded strip

foundation
2dQuo maximum horizontal load of a surface strip

foundation
Su undrained shear strength

Tbase resultant shear force on the base
Tsidewall resultant shear force on the vertical sidewalls

u horizontal translation
W weight of superstructure
w vertical translation (settlement)
α adhesion coefficient
β ‘back-stress’ parameter
γ parameter determining rate of decrease of

kinematic hardening with increasing plastic
deformation

δ sidewall displacement
εy yield normal strain
θ rotation
λ fraction of yield stress
ν Poisson’s ratio
σu ultimate strength
σy yield stress defined in equation (3)
σ0 stress defined in equation (5)
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